2D Kinematics: Pre-Test Practice

1. Find the x-component of the following vector: 44m/s [68° below +x]

a. 14m/s

b. -14m/s

c. 16m/s

d. -16m/s

e. 21m/s i. 41m/s

f. -21m/s j. -41m/s

g. 29m/s k. 44m/s

h. -29m/s I. -44m/s

2. Find the y-component of the following vector: 44m/s [68° below +x]

- a. 14m/s
- b. -14m/s
- c. 16m/s
- d. -16m/s

e. 21m/s ·

f. -21m/s

i. 41m/s

j. -41m/s

- g. 29m/s k. 44m/s
- h. -29m/s I. -44m/s

3. Find the x-component of the following vector: 68m/s [19° N of W]

- a. 34m/s
- b. -34m/s
- c. 49m/s
- d. -49m/s

- e. 64m/s i. 53m/s
- f. -64m/s i. -53m/s
- g. 22m/s k. 11m/s
- h. -22m/s l. -11m/s

4. Find the y-component of the following vector: 68m/s [19° N of W]

- a. 34m/s e. 64m/s
- b. -34m/s f. -64m/s
- c. 49m/s g. 22m/s
- d. -49m/s h. -22m/s

- i. 53m/s
- j. -53m/s
- k. 11m/s
- I. -11m/s

5. A car travels from A to B to C along the path shown above. The trip takes 7.0 minutes. What is the average speed for the trip?

- (a.)17m/s
- b. 12m/s
- c. 12m/s [37° below -x]

d. 12m/s [53° below –x] e. 12m/s [37° above +x]

- f. 12m/s [53° above +x]

6. A car travels from A to B to C along the path shown above. The trip takes 7.0 minutes. What is the average velocity for the trip?

a. 17m/s

b. 12m/s

c. 12m/s [37° below -x]

- d. 12m/s [53° below -x]
- e. 12m/s [37° above +x]
- f. 12m/s [53° above +x]

7. A bird is flying 4.0m/s west and then turns to travel 3.0m/s south. Assuming constant acceleration, what is the bird's average velocity?

- a. 5.0m/s [37° S of W]
- - b 2.5m/s [37° S of W]
- c. 5.0m/s [37° S of E]

- d. 2.5m/s [37° S of E]
- e. 5.0m/s [37° N of W]
- f. 2.5m/s [37° N of W]

8. A bird is flying 4.0m/s west and then turns to travel 3.0m/s south. What is the bird's change in velocity?

- a. 5.0m/s [37° S of W]
- b. 2.5m/s [37° S of W]
- (c.)5.0m/s [37° S of E]

- d. 2.5m/s [37° S of E]
- e. 5.0m/s [37° N of W]
- f. 2.5m/s [37° N of W]

e. 4s

9. A projectile is fired at 60.0m/s [30.0° above horizontal]. Which of the following is the best estimate for the time the projectile will take to reach its highest point?

- a. 0.5s
- c. 2s

f. 6s

10. A car accelerates from rest over 100m in 5.0s. What is the average speed?

- a. 10m/s
- b. 20m/s
- c. 40m/s

11. A car accelerates from rest over 100m in 5.0s. What is the final speed?

- a. 10m/s
- b. 20m/s
- c. 40m/s
- d. 50m/s

12. If two velocity vectors with magnitudes 5.00 m/s and 7.00 m/s are added, which of the following	magnitudes is IMPOSSIBLE for
the resultant?	

- /a. 12.5 m/s
- b. 12.0 m/s
- c. 7.00 m/s
- d. 5.00 m/s
- e. 3.0 m/s

13. Which of the following is a possible graph of horizontal velocity vs. time for a projectile thrown upward from the ground?

14. Which of the following is a possible graph of vertical velocity vs. time for a projectile thrown upward from the ground?

15. Which of the following is a possible graph of vertical acceleration vs. time for a projectile thrown upward from the ground?

16. Which of the following is a possible graph of vertical position vs. time for a projectile thrown upward from the ground?

17. The slope of a velocity vs. time graph tells which of the following?

- a. average velocity
- b. change in velocity
- c. displacement
- d. acceleration

18. A Styrofoam cup filled with soy sauce and powdered sugar free falls from rest. It takes the cup a time T to fall a distance D. How long would it take a second cup to fall a distance 2D?

- a. 2T
- b. ½ T
- c. 4T
- d. need to know the masses of the objects to answer

(e. √2 T

19. A projectile is launched over level ground at an angle of 30.0°. The projectile takes 2.00s to reach its maximum height. What was its initial speed?

- a. 9.80m/s
- b. 19.6m/s
- c. 27.6m/s
- d. 39.2m/s
- e. 42.1m/s

20. A projectile is fire How high up the wall		angle of 10.0° ab	ove horizontal. The	projectile strikes	a wall that is 7	7.50m away horizontally.
a. 65cm	(b. 81cm	c. 1.2m	d. 1.3m	e. 1.8m	A	sum .
21. A car travels clock What is the direction			track at constant sp	peed. The car beg	ins at the 6 o' $\sqrt[7]{}$	Slock position.
a.			(b.))
c.			d.	/		
e.	†				villa) V	6'o'clau
Consider the followin	g v vs. t graph and	answer questions	s 22-26			
					→ t	
22. At what time(s) w	$t_1 = t_2$ ill there be a vertex	τ₃ con the correspo	nding d vs t graph?	L 4	ıs	
a. t_1 only b. t_2 only c. t_3 only d. t_2 and t_3		,				
23. When is the accel a. from 0 to b. At t_1 and t_2 c. from t_1 to d from t_2 to	t ₂ t ₄ only t ₄ t ₃		:			
e. from t ₃ to 24. When is the veloce a. from 0 to b. from 0 to c. from t ₁ to d. from t ₂ to e. from t ₃ to	ity negative? t ₁ t ₁ and t ₄ to t ₅ t ₄					
25. When is the object a. from 0 to $\frac{1}{2}$ b. from 0 to $\frac{1}{2}$ c. from $\frac{1}{2}$ to $\frac{1}{2}$ d. from $\frac{1}{2}$ to $\frac{1}{2}$ e. from $\frac{1}{2}$ to	at speeding up? t_1 and t_3 to t_4 t_2 t_4 t_2 and t_4 to t_5 t_2 only	n 4-0 a-d 4 4 4	aracant?			
b. change in	ded region betwee elocity from 0 to t_1 . velocity from 0 to t_1 . ent from 0 to t_1 .		oresent?			

e. none of the above

	P	_
27. Which vector equation below correctly to a D+K=R b. D+R=K c. K+R=D d. D+K+R=0	matches the vector diagram shown?	R
28. A buffalo runs off of a 9.0m high cliff at a a. 4.0m b. 6.0m	8.00m/s. How far from the base of the clif	f does it land?

360m

(d.)11.0m e. 17m f. 26m

- 30. A canon-ball is launched, on level ground, with a speed of 99.0 m/s. The launch angle is 64.5° above positive x.
 - a. Find the horizontal distance travelled before landing. 777 77
 - b. The maximum height reached by the canon-ball. 407 m
- 31. An object travels horizontally off of a 36m high cliff. The object lands 41m from the base of the cliff.
 - a. Find the initial velocity. 15%
 - b. Find the velocity at impact. 31 m/s ((6.0x10) below horizontal)
- 32. A 2.6kg frozen chicken is launched with a velocity of 32m/s @ 71° above horizontal from the top of a 12m high building.

- b. Find the range of the flight.
- 33. A car drives horizontally at 72.0km/h from a 9.0m tall cliff. How far from the base of the cliff does the car land?

- 34. A potato is thrown, on level ground, with a speed of 29.0 m/s. The throw angle is 38.2° above positive x.
 - a. Find the horizontal distance travelled before landing. 83.+mb. The maximum height reached by the potato. 16.4m