Converting between Standard and Component Form

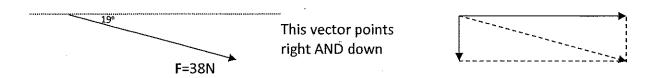
N3

It will be important for us to be able to work with vectors in both **standard** and **component** form. It is also important that we can convert a vector in standard form to a vector in component form, and to convert a vector in component form to a vector in standard form.

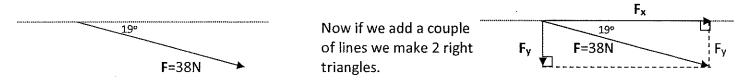
1. Standard to Component

Consider the following vector:

$$F = 38N [19^{\circ} below +x]$$



But how do we find the x and y vectors (called components)? TRIGONOMETRY!



This vector can be described using its length, or magnitude and its direction, or angle.

We say:
$$\mathbf{F} = 38N \left[19^{\circ} \text{ below} + \mathbf{x} \right]$$
 (Below because it is down, +x because it is to the right)

$$\cos 19^{\circ} = \frac{F_{\times}}{38N}$$

And so we can find the magnitudes of Fx and Fy.

The direction is found just by looking at the diagram.

Example 1:

Let's illustrate with an example. Consider the following two vectors given in standard form.

 d_1 points left and up, d_2 points right and down. The components of the vector simply tell us how much left or right and how much up or down. We can diagram this in a couple of ways.

This creates two right triangles! This is because BY DEFINITION the components of a vector are always perpendicular to each other. That's good because we already know how to solve right angled triangles!

$$cos(63.5^{\circ}) = \frac{d_{1x}}{d_{1}}$$
 $cos(63.5^{\circ}) = 58.0 \text{m} \cos(63.5^{\circ}) = 25.87947316 \text{m}$

Now we need to indicate that it points left.

$$d_{1x} = -25.87947316 \text{m } x$$

$$\sin(63.5^\circ) = \frac{d_{1y}}{d_1}$$
 $d_{1y} = d_1 \sin(63.5^\circ) = 58.0 \text{m } \sin(63.5^\circ) = 51.90619297 \text{m}$

Now we need to indicate that it points up.

$$d_{1y} = 51.90619297 \text{m y}$$

We now know d1 in component form.

$$d_1 = -25.87947316$$
m $x + 51.9061929$ 7 m y

$$\cos(13.2^{\circ}) = \frac{d_{2x}}{d_{2}}$$
 \longrightarrow $d_{2x} = d_{2}\cos(13.2^{\circ}) = \frac{1.5}{1.5} \cos(13.2^{\circ}) = \frac{69.61089156}{1.56} \cos(13.2^$

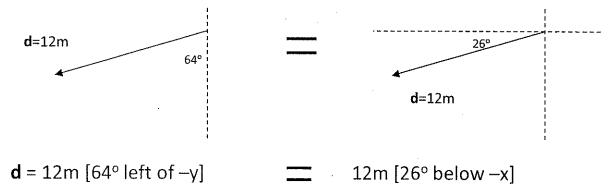
Now we need to indicate that it points
$$\underline{right}$$
.

$$\sin(13.2^\circ) = \frac{d_{2y}}{d_2}$$
 $\Rightarrow d_{2y} = \frac{d_2 \sin 13.2^\circ}{d_2} = \frac{71.5 \sin 13.2^\circ}{10.25858195} = \frac{16.25858195}{10.25858195} = \frac{16.25858195}{10.2585815} = \frac{16.25858195}{10.2585815} = \frac$

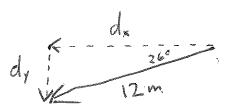
Now we need to indicate that it points \sqrt{lown} .

We now know d2 in component form.

Example 2:

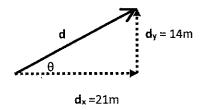


Sketch and find the x and y components of the above displacement vector



2. Component to Standard

This is fairly straight forward. All we need to be able to do is solve another right triangle. Consider the following vector in component form:



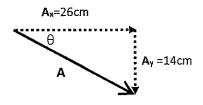
We can simply use Pythagoras' Theorem to find the magnitude, and the tangent ratio to find the direction.

$$d_T = \sqrt{{d_{tx}}^2 + {d_{ty}}^2}$$

$$\theta = tan^{-1} \frac{d_{ty}}{d_{tx}}$$

Example: A = 26 cm x + (-14 cm) y

1. Sketch the vector:



2. Use Pythagoras' Theorem to find the magnitude:

$$A = \sqrt{A_x^2 + A_y^2} = \sqrt{26cm^2 + 14cm^2} = \dots 29.529.64612 cm$$

3. Use the arctangent function to find the angle:

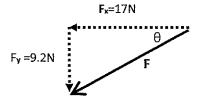
$$\theta = tan^{-1} \frac{A_y}{A_x} = tan^{-1} \frac{14cm}{26cm} = ...$$
 28. 30075577

4. Write the vector in standard notation:

Try these on your own:

$$F = -17N x + (-9.2N) y$$

1. Sketch the vector:



B = 0.060T x + 0.19T y

Now: Practice, practice! You need to be able to do these operations quickly (you should be able to convert either direction in 2 minutes or less) and accurately (any mistake in the basic math will lead to wrong answers elsewhere.)

The jump from 1-D to 2-D is one of the biggest differences between Physics 11 and Physics 12. If you can master these skills **now**, before we start introducing brand new physics concepts, you will have a much greater chance for success!

			,				
						·	
							•
							•
	•				: .		
	٠.					<i>,</i>	
				,			
•							
		,					
		•					